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About this session

• I’m going to talk about why we started work on this project

• I’m going to cover some basic examples at a very shallow level

• I’m not going to get into the details of the type system

• If you’re interested, come to my second presentation:  “The Ceylon 
Language”

• This project is not yet available to the public and has not even been officially 
announced

• QCon China is getting a special sneak preview - the first time I’m talking 
about the project in public!
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Why we’re (still) fans of Java

• Java was the first language to feature the following “perfect” combination of 
features:

• virtual machine execution, giving platform independence

• automatic memory management and safe referencing

• static typing

• lexical scoping

• readable syntax

• Therefore, Java was the first language truly suitable for 

• large team development, and 

• large-scale deployments of multi-user applications.

• It turns out that large teams developing multi-user applications describes the 
most interesting class of project in business computing
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Why we’re (still) fans of Java

• Java is easy

• Java’s syntax is rooted in standard, everyday mathematical notion taught 
in high schools and used by mathematicians, engineers, and software 
developers

• not the lambda calculus used only by theoretical computer scientists

• The language is mostly simple to learn and the resulting code is extremely 
easy to read and understand

• Static typing enables sophisticated tooling including automatic refactoring, 
code navigation, and code completion

• this kind of tooling is simply not possible without static typing

• Java is robust

• With static typing, automatic memory management, and no C-style 
pointers, most bugs are found at development time
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Why we’re (still) fans of Java

• The Java community is made of ordinary people trying to solve practical 
problems

• Java is unashamedly focussed on problems relevant to business 
computing

• The culture is a culture of openness that rejects dominance by any single 
company or interest

• Java has remained committed to platform independence and portability

• The community has a huge tradition of developing and sharing reusable 
code (frameworks, libraries)

Wednesday, April 13, 2011



Why we’re frustrated

• After ten often-frustrating years developing frameworks for Java, we simply 
can’t go any further without a better solution for defining structured data and 
user interfaces

• Java is joined at the hip with XML, and this hurts almost every Java 
developer almost every day

• There is simply no good way to define a user interface in Java, and that is 
a language problem

• Lack of a language-level modularity solution resulted in the creation of 
monstrous, over-complex, harmful technologies like Maven and OSGi.

• Instead of modules, Java has multiple platforms, which has divided the 
developer community

• Lack of support for first-class and higher-order functions results in much 
unnecessary verbosity in everyday code

• Meta-programming in Java is clumsy and frustrating, reducing the quality of 
framework and other generic code
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Why we’re frustrated

• A number of other “warts” and mistakes annoy us every day, for example

• getters/setters

• arrays and primitive types

• non-typesafety of null values

• the dangerous synchronized keyword

• clumsy annotation syntax

• verbose constructor syntax

• broken == operator

• checked exceptions

• complex parametric polymorphism system (generics) that few developers 
completely understand

• ad-hoc (broken?) block structure

• clumsy, error-prone instanceof and typecast syntax
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Why we’re frustrated

• Most of all, we’re frustrated by the SE SDK

• designed in haste 15 years ago, and never properly modernized, it still has 
an experimental, work-in-progress feel about it

• but is simultaneously bloated with obscure stuff

• features some truly bizarre things

• e.g. all Java objects are semaphores ?!

• many basic tasks are absurdly difficult to accomplish

• e.g. anything involving java.io or java.lang.reflect

• overuses stateful (mutable) objects

• especially the highly overrated collections framework
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The Ceylon Project

• What would a language and SDK for business computing look like if it were 
designed today, with an eye to the successes and failures of the Java 
language and Java SE SDK?
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The Ceylon Project

• This much is clear:

• It would run on the Java Virtual Machine

• It would feature static typing

• It would feature automatic memory management and safe referencing

• It would retain Java’s readability

• It would feature first-class and higher-order functions

• It would provide a declarative syntax for defining user interfaces and 
structured data

• It would feature built-in modularity

• It would strive to be easy to learn and understand
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The Ceylon Project

• Unfortunately, there’s no existing language that truly fits these requirements

• My team has spent the past two years designing what we think the language 
should look like, writing a language specification, an ANTLR grammar, and a 
prototype compiler

• You can’t write code in the language just yet!

• We plan an initial release of the compiler later this year

• I can’t cover the whole language, or even explain the most interesting 
principles and concepts in the short time I have here

• The most I can do is give a taste of what some code looks like
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Hello World

void hello() {
    writeLine(“Hello World!”);
}

The language has a strict recursive, regular 
block structure governing visibility and 
lifecycle of declarations. Therefore, there’s no 
equivalent of Java’s static. Instead, a 
toplevel method declaration fills a similar role.

put this in a file called hello.ceylon
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Hello World

API documentation is specified using 
annotations.

doc “The classic Hello World program”
by “Gavin”
void hello() {
    writeLine(“Hello World!”);
}

Modifiers like abstract, variable, 
shared, deprecated aren’t 
keywords, they’re just annotations.
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Hello World

void hello(String name) {
    writeLine(“Hello “ name ”!”);
}

String interpolation has a simple 
syntax - very useful in user interface 
definitions.

void is a keyword!
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Hello World

void hello(String name = ”World”) {
    writeLine(“Hello “ name ”!”);
}

Defaulted parameters are optional.

Defaulted parameters are extremely 
useful, since Ceylon does not 
support method overloading (or any 
other kind of overloading).
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Hello World

void hello() {
    String? name = process.args.first;
    if (exists name) {
        writeLine(“Hello “ name ”!”);
    }
    else {
        writeLine(“Hello World!”);
    }
}

If a value of type T can be null, it must be declared as type 
Optional<T>, which may be abbreviated to T?.

Use of an optional value must be guarded by 
the if (exists ... ) construct. Therefore, 
NullPointerExceptions are impossible.
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Classes

class Counter() {
    variable Natural count := 0;

    shared void increment() { 
        count++; 
    }

}

Attributes and local variables are immutable by default. 
Assignable values must be annotated variable.

The shared annotation makes a 
declaration visible outside the block 
in which it is defined. By default, any 
declaration is block local.

All values are instances of a class.
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Classes

class Counter() {
    variable Natural count := 0;
    shared void increment() { 
        count++; 
    }
    shared Natural currentValue { 
        return count; 
    }
}

An attribute may be a simple value, a getter, 
or a getter/setter pair.

A getter looks like a method 
without a parameter list.
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Classes

Counter c = Counter();
c.increment();
writeLine(c.currentValue);

There is no new keyword.

 Attribute getters are called just like 
simple attributes. The client doesn’t 
care what type of attribute it is.

 Attributes are polymorphic. A subclass may override 
a superclass attribute. It may even override a simple 
attribute with a getter or vice versa!
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Classes

local c = Counter();
c.increment();
writeLine(c.currentValue);

The local keyword may be used in place 
of a type for block-local declarations.

You can’t use local for shared 
declarations. One consequence of this 
is that the compiler can do type 
inference in a single pass of the code!
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Classes

class Counter() {
    variable Natural count := 0;
    ...
    shared Natural currentValue { 
        return count; 
    }
    shared assign currentValue {
        count := currentValue;
    }
} Assignment to a variable value or attribute 

setter is done using the := operator. The = 
specifier is used only for specifying immutable 
values.
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Classes

class Counter(Natural initialValue) {
    if (initialValue>1000) {
        throw OutOfRangeException();
    }
    variable Integer count := initialValue;
    ...
}

There is no constructor syntax. Instead, the 
class itself declares parameters, and the body 
of the class may contain initialization logic.

How can a class have multiple constructors? 
It can’t! There’s no overloading in Ceylon.
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Sequences

Sequence<String> itin = 
        Sequence(“Guanajuato”, “Mexico”, 
           “Vancouver”, “Auckland”,
           “Melbourne”);

String? mex = itin.value(1);
Sequence<String> layovers = 
        itin.range(1..3);

Sequence<String> longer = join(itin, 
        Sequence(“Hong Kong”, “Beijing”));

Sequences are immutable objects that are a bit like arrays.
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Sequences

String[] itin = 
        { “Guanajuato”, “Mexico”, 
           “Vancouver”, “Auckland”,
           “Melbourne” };

String? mex = itin[1];
String[] layovers = 
        itin[1..3];

String[] longer = itin + 
        { “Hong Kong”, “Beijing” };

Syntactic abbreviations allow us to eliminate the verbosity.
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Higher-order functions

void repeat(Natural times,
        void perform()) {
    for (Natural n in 1..times) {
        perform();
    }
}

A parameter may be a method signature, 
meaning that it accepts references to methods.

The “functional” parameter may be 
invoked just like any other method.
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Higher-order functions

repeat(3, hello);

A reference to a method is just the name of 
the method, without an argument list.
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Higher-order functions

repeat(3, person.sayHello);

We can even “curry” the method receiver.
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Higher-order functions

void hello(String name) = hello;

The name of the method, without 
arguments, refers to the method itself.

Unlike other languages with first-class functions, 
Ceylon doesn’t have a syntax for anonymous 
functions (“lambdas”) that appear in expressions.

We may define a method “by reference”.

void hello2(String name) = person.sayHello;
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Higher-order functions

repeat(3) 
perform() { 
    writeLine(“Hola Mundo!”); 
};

Alternatively, a method may be defined inline, 
as part of the invocation. This syntax is stolen 
from Smalltalk.

The method name

A parameter name
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Higher-order functions

repeat(3) 
perform { 
    writeLine(“Hola Mundo!”); 
};

We may omit the empty parameter list.

This allows a library to define syntax for new control 
structures, assertions, comprehensions, etc.
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Higher-order functions

Float add(Float x)(Float y) {
    return x+y;
}

A method may declare multiple lists of 
parameters. The method body is executed 
after arguments have been supplied to all 
parameter lists.
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Higher-order functions

Float addOne(Float y) = add(1.0);
Float three = addOne(2.0);

Providing arguments to just one parameter 
list produces a method reference. 

The point of all this is that we are able to 
provide all the functionality of first-class 
and higher-order functions without needing 
to resort to unnatural syntactic constructs 
inspired by the lambda calculus notation. 

We can “curry” a list of arguments.
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Closure

void aMethod(String name) {
    void hello() { 
        writeLine(“Hello “ name “!”); 
    }
}

class AClass(String name) {
    void hello() { 
        writeLine(“Hello “ name “!”); 
    }
}

An inner declaration always has access to parameters, 
locals, and attributes of the containing declaration.

Notice how regular the language syntax is!
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Named argument syntax

String join(String separator, 
        String... strings) { ... }

join(“, ”, “C”, “Java”, Smalltalk”);

join { separator = ”, “;
    “C”, “Java”, Smalltalk” };

A named argument invocation is enclosed in 
braces, and non-vararg arguments are listed 
using the name=value; syntax.
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Higher-order functions and named arguments

repeat { 
    times = 3; 
    void perform() { 
        writeLine(“Hola Mundo!”); 
    }
}; A named argument may even 

be a method definition.

The method name

A parameter name

Another parameter name
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Named argument syntax

Html hello {
    Head head { title = “Squares”; }
    Body body {
        Div { 
            cssClass = “greeting”;
            “Hello” name “!” 
        }
    }
} This looks like a typesafe declarative 

language (for example XML) with built-in 
templating. But it’s actually written in a 
general-purpose language!
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Named argument syntax

class Table(String title, Natural rows,
    Column... columns) { ... }

class Column(String heading, 
    String content(Natural row)) { ... }

We can define the “schema” of a declarative 
language as a set of classes.
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Named argument syntax

Table squares {
    title = “Squares”; 
    rows = 10;
    Column {
        heading = “x”;
        String content(Natural row) { 
            return $row;
        }
    }
    Column {
        heading = “x**2”;
        String content(Natural row) { 
            return $row**2;
        }
    }
}

Notice the use of callback methods!
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What next?

• If you’re interested to learn more, come to the next talk “The Ceylon 
Language”

• We need help implementing the compiler and designing the SDK.

• This isn’t worth doing unless we do it as a community!

Questions?
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